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Abstract

It is well known that geomaterials such as soils exhibit an increase in volume during shearing deformation, referred

to as dilatancy. Dilatancy is a typical property of such granular materials as soils and is closely related to changes in the

microstructure. Normally consolidated clay exhibits negative dilatancy or contractancy, namely, a decrease in volume

during shearing. On the other hand, overconsolidated clay shows positive dilatancy, namely, an increase in volume

during shearing. The aim of the present paper is to study the effects of the microstructure, such as dilatancy and

permeability, on the strain localization of water-saturated clay using an elasto-viscoplastic constitutive model. Based on

the non-linear kinematic hardening theory and a Chaboche type of viscoplasticity model, an elasto-viscoplastic model

for both normally consolidated and overconsolidated clays is proposed; the model can address both negative and

positive dilatancies. Firstly, the instability of the model under undrained creep conditions is analyzed in terms of the

accelerating creep failure. The analysis shows that clay with positive dilatancy is more unstable than clay with negative

dilatancy. Secondly, a finite element analysis of the deformation of water-saturated clay is presented with focus on the

numerical results under plane strain conditions. From the present numerical analysis, it is found that both dilatancy and

permeability prominently affect shear strain localization behavior. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The problem of strain localization in such geomaterials as soils and rocks has been studied in the context
of experimental, theoretical, and numerical approaches over the last three decades. It has been found that
the onset conditions for strain localization such as shear banding can be captured by a bifurcation analysis
(see Rice (1976), among others). As such, numerous researchers have tried to numerically simulate shear
banding in many engineering materials, including metals and geological materials (Loret and Prevost,
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1991). Through these numerical studies, it has been realized that instability and ill-posedness might be
encountered in the problem when using a rate-independent elasto-plastic model in the numerical analysis.
In general, there are three methods which can be used to overcome the above-mentioned instability. One

method is to introduce rate dependency of the material through the use of an elasto-viscoplastic model or
by way of regularization in the numerical analysis (Cormeau, 1975; Hughes and Taylor, 1978; Simo and
Hughes, 1997). The second method is to introduce higher order strain gradients into the constitutive model
(e.g. Aifantis, 1984, 1987; M€uuhlhaus and Aifantis, 1991; Vardoulakis and Aifantis, 1991; de Borst and
Sluys, 1991; Aifantis et al., 1999 and Hutchinson, 2001). The third approach is to incorporate a Darcy type
of soil–fluid interaction which can alleviate the problem of instability by delaying the onset of material
instability (Rice, 1975, 1976; Loret and Prevost, 1991; Oka et al., 1995 and Schrefler et al., 1996). Loret and
Prevost (1991) studied a dynamic strain localization problem of water-saturated soil using a Drucker–
Prager model with positive dilatancy.
The present study deals with the behavior of clay in which the aspect of rate dependency comes naturally

into the modeling. In addition, since the transport of water must be considered in the behavior of water-
saturated clay, the problem is formulated within the solid–fluid two-phase theory. Oka et al. (1994, 1995,
2000a, 2000b) studied strain localization problems pertinent to water-saturated clays using a viscoplastic
model. In particular, it was found that strain localization in the shear band of water-saturated clays could
be simulated via a finite element analysis using an elasto-viscoplastic model with viscoplastic softening (Oka
et al., 1995). However, the model used in the analysis was limited to normally consolidated clay with
negative dilatancy.
It is well known that geomaterials with a particulate microstructure such as soil show an increase in

volume during shearing deformation, which is called dilatancy. Normally consolidated clay exhibits a
decrease in volume, i.e., negative dilatancy or contractancy. On the other hand, overconsolidated clay
shows an increase in volume, i.e., positive dilatancy. The clay is called ‘‘normally consolidated clay’’, in the
classical sense, if the present effective stress is the maximum stress it has ever experienced in its entire
history. The clay is called ‘‘overconsolidated clay’’ if it has been subjected to an effective stress greater than
the present one. An improvement to the classical definitions is such that the present stress of overcon-
solidated clay is less than the consolidation yield stress, while the present stress of normally consolidated
clay is equal to the consolidation yield stress.
The above discussion prompts the following question. How do both positive and negative dilatancies

affect strain localization phenomena? The answer lies in a detailed study that must include comprehensive
comparisons between numerical predictions and experimental results. For this purpose, an elasto-visco-
plastic model for water-saturated clay has been proposed in the present analysis based on a Chaboche type
of viscoplastic theory (Chaboche and Rousselier, 1980) and the kinematic hardening rule with viscoplastic
softening. The developed model can describe both negative and positive dilatancy characteristics. The
instability of the model is examined under undrained triaxial creep conditions. The strain localization
problem was numerically studied for water-saturated normally consolidated clay by Oka et al. (1995). It
was found that negative dilatancy prominently affects strain localization. In the present paper, the effects of
dilatancy and permeability are numerically investigated for both dilatant and contractant clays using the
newly developed elasto-viscoplastic constitutive model which can be applied to both normally and over-
consolidated clays. From the present numerical analysis, it is found that dilatancy characteristics play an
important role in strain localization behavior.
The plan of the present paper is as follows. In Section 2, an elasto-viscoplastic constitutive model,

applicable to both normally consolidated and overconsolidated clays, is proposed based on the non-linear
kinematic hardening theory. In Section 3, the instability of the model under undrained triaxial conditions is
then discussed. Finally, in Section 4, the finite element formulation for the deformation analysis of water-
saturated clay is presented, and a discussion on the numerical results of the clay behavior under plane strain
conditions, which highlights the effect of dilatancy on strain localization, follows.
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2. Elasto-viscoplastic model for clay

Adachi and Oka (1982) proposed an elasto-viscoplastic model for water-saturated normally consolidated
clay based on a Perzyna type of viscoplasticity theory (Perzyna, 1963) and Cam-clay model, has been
applied to many practical problems and strain localization problems (Oka et al., 1995). In the present study,
an elasto-viscoplastic model for both normally consolidated and overconsolidated clays, based on the ki-
nematic hardening viscoplastic theory proposed by Chaboche and Rousselier, 1980, is developed. The
model can be seen as an extension of the overstress type of viscoplastic model developed by Adachi and
Oka (1982) for the behavior of normally and quasi-overconsolidated clays.
In the following, Terzaghi’s effective stress concept is used for water-saturated soil because the com-

pressibility of the pore water is effectively small, i.e.

rij ¼ r0
ij þ uwdij ð1Þ

where rij is the total stress tensor, r0
ij is the effective stress tensor, uw is the pore water pressure, and dij is

Kronecker’s delta. Furthermore, an additive decomposition of the total strain rate into elastic, _eeeij, and
viscoplastic, _eevpij , ones is assumed such that

_eeij ¼ _eeeij þ _eevpij ð2Þ

Elastic strain rate _eeeij is given by a generalized Hooke type of law, i.e.

_eeeij ¼
1

2G
_SSij þ

j
3ð1þ eÞr0

m

_rr
0

mdij ð3Þ

where Sij is the deviatoric stress rate tensor, r0
m is the mean effective stress, G is the elastic shear coefficient, e

is the void ratio, j is the swelling index, and the superimposed dot denotes time differentiation. Swelling
index j is determined by the slope of the volumetric loading–unloading curve of the natural logarithmic
scale.
In the model, it is assumed that there is an overconsolidation (OC) boundary surface that delineates the

OC region (fb < 0) from the normal consolidation region (fbP 0) (see Fig. 1). In previous papers (Adachi
and Oka, 1984; Oka, 1992; Oka et al., 1999), a similar OC boundary surface was used in an elasto-plastic

Fig. 1. Overconsolidation boundary surface under triaxial conditions.
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model for sand and overconsolidated clay. The OC boundary surface was introduced to control the shape
of the plastic potential function.
In order to describe the volumetric relaxation and/or secondary compression under isotropic stress

conditions, it is assumed that the stress state of normally consolidated clay is generally outside of the OC
boundary surface and defined as:

fb ¼ �gg� þM�
m ln

r0
m

r0
mb

¼ 0; �gg� ¼ fðg�
ij � g�

ijð0ÞÞðg�
ij � g�

ijð0ÞÞg
1=2 ð4Þ

r0
mb ¼ r0

mbi exp
1þ e
k � j

evpkk

� �
ð5Þ

g� ¼
ffiffiffiffiffiffiffiffiffiffi
g�
ijg

�
ij

p
; g�

ij ¼
Sij
r0
m

ð6Þ

r0
mc ¼ r0

mb exp
g�
ð0Þ

M�
m

� �
¼ r0

mbi exp
1þ e
k � j

evpkk

� �
exp

g�
ð0Þ

M�
m

� �
ð7Þ

g�
ð0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�
ijð0Þg

�
ijð0Þ

q
; g�

ijð0Þ ¼
Sijð0Þ
r0
mð0Þ

ð8Þ

in which (0) denotes the state at the end of consolidation, r0
mbi is the initial value of r

0
mb, k is the compression

index, and M�
m is the value of g

� at maximum compression. Compression index k is determined by the slope
of the volumetric loading curve of the natural logarithmic scale. In Fig. 1, g11ð0Þð¼

ffiffiffiffiffiffiffiffi
3=2

p
g�
11ð0ÞÞ stands for the

anisotropic consolidation history.
A viscoplastic flow rule is given by

_eevpij ¼ Cijkl U1 fy
� �� 	

U2ðnÞ
ofp
or0

kl

ð9Þ

Cijkl ¼ adijdkl þ bðdikdjl þ dildjkÞ; C01 ¼ 2b; C02 ¼ 3aþ 2b ð10Þ
in which h i is the MacCauley’s bracket; hxi ¼ x, if x > 0,¼ 0, if x6 0, C01, C02 are viscoplastic parameters,
Cijkl U1 fy

� �� 	
denotes a function for strain rate sensitivity, fy is the yield function, fp is the plastic potential

function, U1 denotes a function for rate sensitivity, and U2 controls the failure state where deviatoric strain
becomes infinite.
Based on the experimental results of strain-rate constant triaxial tests (Adachi et al., 1987; Oka et al.,

1994), U1 is defined as

U1ðfyÞ ¼ expðm0fyÞ ð11Þ
where m0 is the viscoplastic parameter for a given degree of rate sensitivity.
Yield function fy with two kinematic hardening parameters, namely, x�ij and y�m, is given by

fy ¼ �gg�
x þ eMM � ln

r0
m

r0
ma

�
� y�m

�
¼ 0 ð12Þ

�gg�
x ¼ fðg�

ij � x�ijÞðg�
ij � x�ijÞg

1=2
; g�

ij ¼
Sij
r0
m

ð13Þ

where r0
ma is taken as the initial value of the mean effective stress.

Herein, two strain-hardening parameters are used in the model, namely, x�ij, which depends on the vi-
scoplastic shear strain rate, and y�m, which is related to volumetric viscoplastic strain evpkk.
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The evolutional equations of x�ij and y�m are given by

dx�ij ¼ B�
1 A�

1de
vp
ij

�
� x�ijdc

p
�

ð14Þ

devpij ¼ devpij �
1

3
devpkkdij; dcp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
devpij de

vp
ij

q
ð15Þ

dy�m ¼ dy�m1 þ dy�m2 ð16Þ

dy�m1 ¼ B�
2 A�

2de
vp
kk

�
� y�m1jde

vp
kkj
�

ð17Þ

dy�m2 ¼
1þ e
k � j

devpkk ð18Þ

where A�
1, A

�
2, A

�
3, B

�
1, and B�

2 are material parameters and A�
1ð¼M�

f Þ is the value of g� at the failure state.
A second material function, U2, that is dependent on the internal state variables, is chosen to control the

failure state. Basically, it is assumed that U2 becomes infinite at failure (Adachi et al., 1987, 1990), i.e.

U2ðnÞ ¼ 1þ n ð19Þ

in which n is an internal variable.
In general, n follows an evolutional equation whose integrated form, satisfying the above-mentioned

failure requirement for the internal variable, is given by

n ¼
M�
f �gg

��
xð0Þ

G�
2 M�

f �
g��mnðg��mn�x�mnÞ

�gg��x

n o ð20Þ

where G�
2 is a parameter for the second material function and M

�
f is the value of the stress invariant ratio at

failure and

�gg��
x ¼ fðg��

ij � x�ijÞðg��
ij � x�ijÞg

1=2
; g��

ij ¼
S�
ij

r0�
m

ð21Þ

�gg��
xð0Þ ¼ fðg��

ij � x�ijð0ÞÞðg��
ij � x�ijð0ÞÞg

1
2 ð22Þ

where g��
ij is the stress history invariant ratio, S

�
ij and r0�

m are the deviatoric and the mean components of
stress history tensor r�

ij, respectively, and x�ijð0Þ denotes the initial value of x
�
ij.

Furthermore, stress history tensor r�
ij is defined as

r�
ij ¼

1

s

Z z

0

exp
�
� ðz� z0Þ=s

�
rijðz0Þdz0; 06 z0 < z ð23Þ

z ¼
Z t

0

dz0; dz0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
deijdeij

p
ð24Þ

where t is time, deij is the increment of deviatoric strain, and s is a material parameter.
The stress history tensor was advocated by Oka (1985) and Adachi and Oka (1995). In their theory, both

the yield and the hardening functions depend on the stress history rather than on the real stress in order to
describe the strain-softening behavior of geomaterials. From the assumption that the second material
function, U2, is a function of stress history ratio tensor g��

ij , it becomes possible to describe the material
behavior in which the stress path can reach a point over the failure line. This type of behavior is dominant
for overconsolidated clay as was revealed in the experiments (see, for example, Fig. 2).
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The plastic potential is given by Eq. (25), which is similar to the yield function, in other words,

fp ¼ �gg�
x þ eMM � ln

r0
m

r0
mp

 
� y�m

!
¼ 0 ð25Þ

�gg�
x ¼ fðg�

ij � x�ijÞðg�
ij � x�ijÞg

1
2; g�

ij ¼
Sij
r0
m

ð26Þ

fb < 0; eMM � ¼ � �gg�

lnðr0
m=r

0
mcÞ

ð27Þ

Fig. 2. Stress–strain relations and stress paths of Osaka Pleistocene clay (Yashima et al., 1999).
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fbP 0; eMM � ¼ M�
m ð28Þ

where fb is the OC boundary surface given by Eq. (4), and r0
mp is a material parameter, herein taken to be

equal to the initial value of r0
m.

Using the flow rule and the plastic potential function, we obtain the deviatoric viscoplastic strain rates
_eevpij and volumetric viscoplastic strain rate _eevpkk as:

_eevpij ¼ C01 exp m0 �gg�
x

��
þ eMM � ln

r0
m

r0
ma0

�
� y�m

���
U2 nð Þ

ðg�
ij � x�ijÞ
�gg�
x

ð29Þ

_eevpkk ¼ C02 exp m0 �gg�
x

��
þ eMM � ln

r0
m

r0
ma0

�
� y�m

���
U2 nð Þ eMM �

(
� g�

mnðg�
mn � x�mnÞ
�gg�
x

)
ð30Þ

From Eq. (30), it is seen that the sign of the volumetric inelastic strain rate depends on the stress state even
inside the OC boundary surface, because the volumetric strain depends on the value of eMM � given by Eqs.
(27) and (28), and inside the OC boundary surface, eMM � is a function of r0

mc defined by Eq. (7), which is
related to the shape of OC boundary surface shown in Fig. 1.
Figs. 3 and 4 show the stress–strain relations and the stress paths under undrained triaxial compression

conditions. Table 1 lists the 16 material parameters, including two parameters of the initial conditions, that
were used in the analysis in which a linear kinematic hardening equation is assumed for changes in the mean
effective stress. Three parameters are different for overconsolidated and normally consolidated clays. This
means that the magnitude of strain softening and kinematic hardening depends on the magnitude of OC.
Following the tradition of soil mechanics, compression is denoted as positive in the table and in the figures.
Both the strain rate effect and the strain-softening behavior are observed in Figs. 3 and 4. From the stress
paths, it is seen that the mean effective stress increases due to positive dilatancy for overconsolidated clay,
while the mean effective stress decreases due to negative dilatancy for normally consolidated clay. The
simulated results qualitatively capture typical stress–strain characteristics of natural clays such as the be-
havior of stiff Osaka Pleistocene clay shown in Fig. 2 (see Yashima et al. (1999)). From a quantitative point
of view, a more thorough study on the determination of the soil parameters for natural clay is necessary to
improve the simulated results.

3. Instability of the model

Oka et al. (1995) studied the instability of the viscoplastic model in terms of undrained creep failure for
normally consolidated clay. In order to discuss the instability of the proposed viscoplastic model, we herein
consider the response of the model under conventional triaxial undrained creep conditions (see Fig. 5) using
the same method by Oka et al. (1995). Under undrained creep conditions, a constant deviatoric stress is
maintained, although the mean effective stress may change due to the undrained condition that requires a
total of zero for the volumetric strain rate.
Under the axisymmetric triaxial testing conditions ðr0

11 > r0
22 ¼ r0

33, r
0
ij ¼ 0 ði 6¼ jÞÞ, the deviator stress is

expressed by q which is defined as

q ¼ r0
11 � r0

22 ð31Þ
Since the total volumetric strain is zero, the following relation is obtained after integration, i.e.

evpkk ¼ � j
ð1þ eÞ ln

r0
m

r0
me

ð32Þ

where r0
me is the initial value of the mean effective stress.
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Herein, the following variables are used under the triaxial conditions:

g ¼
ffiffiffiffiffiffiffiffi
3=2

p
g� ¼ q=r0

m; x11 ¼
ffiffiffiffiffiffiffiffi
3=2

p
x�11 ð33Þ

For simplicity, we assume that Mf ¼ Mm ¼ M ðMf ¼
ffiffiffiffiffiffiffiffi
3=2

p
M�
f ; Mm ¼

ffiffiffiffiffiffiffiffi
3=2

p
M�
mÞ.

Under undrained triaxial conditions, and disregarding the deviatoric elastic strain rate, viscoplastic axial
strain rate _eevp11 becomes

_eevp11 ¼ CU2 exp m0 1

M
ðg

��
� xÞ þ ln rm=r

0
me � A3ym

��
ð34Þ

where A3 is the volumetric hardening parameter given by A3 ¼ ð1þ eÞ=ðk � jÞ.

Fig. 3. Stress–strain relations and stress paths of NC clay.
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Finally, the evolutional equations for the two hardening parameters, x11 and ym, are given by

_xx11 ¼ BðA� x11Þ _eevp11 ð35Þ

_yym ¼ _yym2 ¼ A3 _eekk ð36Þ

where B ¼
ffiffiffiffiffiffiffiffi
3=2

p
B�, A ¼

ffiffiffiffiffiffiffiffi
3=2

p
A� ¼ Mf , and ym1 ¼ 0.

Let us calculate a rate of strain rate denoted by €eevp11. By examining the sign of the rate of strain rate €ee
vp
11, we

can estimate the stability of the material system. For example, if the rate of strain rate is positive, the
material undergoes a creep failure.

Fig. 4. Stress–strain relations and stress paths of OC clay.
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Upon time differentiation of a viscoplastic strain rate without a second material function, the rate of
strain rate is obtained as

€ee11 ¼ �m0ð _eevp11Þ
2 1þ e

Mj
ðg

�
� MÞ g

�
� k

k � j
M
�
þ B
M

ðA� x11Þ
�
¼ �m0að _eevp11Þ

2 ð37Þ

a ¼ 1þ e
Mj

ðg
�

� MÞ g

�
� k

k � j
M
�
þ B
M

ðA� x11Þ
�

ð38Þ

Table 1

Material parameters used in the calculations

Parameter NC clay OC clay

Compression index (k) 0.172 0.172

Swelling index (j) 0.054 0.054

Initial void ratio (e0) 0.72 0.72

Initial mean effective stress (r0
me) 392 (kPa) 100 (kPa)

Parameter of OC boundary surface (r0
mbi) 392 (kPa) 392 (kPa)

Coefficient of earth pressure at resta (K0) 1.0 1.0

Viscoplastic parameter (m0) 21.5 21.5

Viscoplastic parameter (C01) 4:5� 10�8 (1/s) 4:5� 10�8 (1/s)
Viscoplastic parameter (C02) 4:5� 10�8 (1/s) 4:5� 10�8 (1/s)
Stress ratio at failure (M�

f ) 1.05 1.05

Stress ratio at maximum compression (M�
m) 1.05 1.05

Elastic shear modulus (G) 5500 (kPa) 5500 (kPa)

Softening parameter (G�
2) 100 1

Kinematic hardening parameter (B�
1) 0.0 0.5

Kinematic hardening parameterb (A�
2) 0.0 0.0

Kinematic hardening parameterb (B�
2) 0.0 0.0

Retardation parameter (s) 1:0� 10�3 0.2

Coefficient of permeabilitya (kx ¼ ky) 1:54� 10�6 (m/s) 1:54� 10�6 (m/s)
1:54� 10�8 (m/s) 1:54� 10�8 (m/s)
1:54� 10�10 (m/s) 1:54� 10�10 (m/s)

aK0 and coefficient of permeability were used in finite element analysis.
bA�

2 and B�
2 were not used in the present analysis.

Fig. 5. Stress paths of undrained creep for NC and OC clays.
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In the above derivation, the stress dilatancy relation

_eevpkk
_eevp11

¼ M � g

and the undrained condition

_eevpkk ¼ � j
1þ e

_rr0
m

r0
m

are introduced.
We will discuss the instability of the model using Eqs. (37) and (38) and the assumption that the last term

is small, since A� x11 � 0 near the failure state. Firstly, we consider the case of undrained creep for nor-
mally consolidated clay in which g < M . In this case, the following conditions prevail, namely, M � g > 0,
ð k
k�jM � gÞ > 0, and A� x11 > 0. Since a > 0, the rate of strain rate is negative, which leads to the con-
clusion that the material system is structurally stable in terms of Liapunov.
Next, we will consider the second material function for normally consolidated clay. The second material

function is simplified with the assumption that the initial value of x11ð0Þ is zero; i.e., x11 ¼ 0. Thus,

U2 ¼ 1þ
Mg

G2ðM � gÞ ¼
G2ðM � gÞ þMg

G2ðM � gÞ ð39Þ

in which G2 ¼
ffiffiffiffiffiffiffiffi
2=3

p
G�
2.

€ee11 ¼ �m0ð _eevp11Þ
2

�
� ð1þ eÞM2g
m0jðG2ðM � gÞ þMgÞ þ

1þ e
Mj

ðg � MÞ g

�
� k

k � j
M
�
þ B
M

ðA3 � xÞ
�

¼ �m0að _eevp11Þ
2 ð40Þ

In contrast to the case without a second material function, it is found that when a second material
function is included, the rate of strain rate €eevp11 may become positive before g reachesM, since the first term
in the square brackets of Eq. (40) increases with a negative sign. Hence, the introduction of a second
material function is inevitable for describing the creep failure of normally consolidated clay in the case of
monotonically increasing hardening function (see Fig. 6). This is consistent with previous results of tests on
the instability of normally consolidated clay obtained by Adachi et al. (1990), Oka et al. (1995).

Fig. 6. Unstable region of NC clay under undrained conditions.
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Next, we will discuss the stability of the model in the region where g > M . This condition corresponds to
the undrained creep tests which can be achieved by applying deviator stress q with a small initial mean
effective stress located in the overconsolidated region. When there is no second material function, the term a
becomes positive in region M < g < k=ðk � jÞM , as shown in Fig. 7. In this region, the material becomes
unstable due to the fact that €eevp11 > 0. On the other hand, when second material function U2 is introduced,
the stability cannot be evaluated with Eq. (40) in the region where g > M because nð¼ðMgÞ=½G2ðM � gÞ�Þ
becomes negative due to a simplification which involves the replacement of g��

ij , defined by the stress history
tensor, with g�

ij based on the stress tensor.
From the above considerations, it becomes evident that the model can simulate the instability associated

with ‘‘undrained creep failure’’ in the specific stress regions. It is worth noting that in the region where
g > M , the model can be unstable even if a second material function is not included.
Using an isotropic hardening viscoplastic model, Oka et al. (1994) found that the material model de-

veloped by Adachi and Oka (1982) is always stable without a second material function, i.e. U2 ¼ 1 in the
normally consolidated region. From the above consideration, however, it becomes evident that overcon-
solidated clay becomes unstable in region (g > M) even for models without a second material function.

4. Finite element analysis of strain localization by an elasto-viscoplastic model

Oka et al. (1994, 1995) numerically studied the strain localization problem using an elasto-viscoplastic
model for normally consolidated clay based on a Perzyna type of overstress model and a Cam-clay model.
They found that strain localization is closely linked to material instability, and can be simulated with a
viscoplastic softening model. In previous studies, a model which can reproduce only negative dilatancy,
such as in the case of normally consolidated clays, was used. On the other hand, it is well known that
overconsolidated clay exhibits positive dilatancy, i.e. a volume increase during shear deformation. In this
section, the effects of dilatancy and permeability on strain localization are numerically studied using the
model proposed in the previous section.

Fig. 7. Unstable region of OC clay under undrained conditions without a second material function.
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Numerical solutions for the plane strain compression problems of water-saturated clay are obtained via
the finite element method. In the finite element analysis, the updated Lagrangian method with the objective
Jaumann rate of Cauchy stress is used for a weak form of the equilibrium equation (see Oka et al., 2000a,b).
Nominal stress rate tensor _SS is given by

_SS ¼ _TTþ trLT� TLT ð41Þ

_SS0 ¼ _TT0 þ trLT0 � T0LT ð42Þ

where T is the Cauchy stress tensor, T0 ¼ T� uwI is the effective Cauchy stress tensor, L is the velocity
gradient tensor, the superposed dot denotes time differentiation, tr is the trace operator, T0 is the effective
Cauchy stress tensor, _SS0 is the effective nominal stress tensor, and I is the second order identity tensor.
The weak form of the equilibrium equation for the whole fluid–solid mixture isZ

v
Sji;jdvi dV ¼ 0 ð43Þ

where vi is the component of the velocity vector.
For describing the motion of pore water, a Biot type of two-phase mixture theory (Biot, 1956) is used in

the analysis with a viðvelocityÞ � uwðpore pressureÞ formulation, i.e.

k
cw

uw;ii þ Dii ¼ 0 ð44Þ

where cw is the unit weight of the pore fluid and Dij is the stretching tensor.
In the analysis, Dij is used instead of _eeij when writing the constitutive equations. For the stress rate tensor

in the model, the Jaumann rate of Cauchy stress tensor bTT is adopted as the objective tensor, namely,
bTT ¼ _TT�WTþ TW ð45Þ

where W is the spin tensor.
The elasto-viscoplastic constitutive model is written as

bTT0 ¼ CD�Q ð46Þ

where C is the tangential stiffness tensor and Q is the relaxation stress tensor.
In the finite-element formulation, the tangent modulus method (Pierce et al., 1984) is used. An eight-

node quadrilateral element with a reduced Gaussian (2� 2) integration (see Fig. 8) is used to eliminate the
shear locking and to reduce the appearance of a spurious hourglass mode. On the other hand, the pore
water pressure is defined at four corner nodes. A weak form of the continuity equation is integrated with a
(2� 2) full integration (see Fig. 8). Using this combination of the spatial integration scheme, the effective
stresses, the pore water pressure, and the strain are all calculated at the same integration points for each
element.
Fig. 9 shows the size of the specimen and the associated boundary conditions. As a trigger for strain

localization, horizontal displacements on both top and bottom surface edges are constrained. Relaxation of
this constraint through the introduction of a frictional boundary will be discussed later. The material
parameters used in the analysis are listed in Table 1 with the coefficient of permeability and the K0 values. In
the analysis, the time increment is determined by the increment of average strain De11 ¼ 0:01%. In this case,
a time increment of 6 s is used.
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4.1. Effects of dilatancy

The compression of a clay specimen is simulated under globally undrained plane strain conditions.
Compression is performed under displacement control with average strain rates of 0.1%/min and 1%/min.
Fig. 10 shows the average stress–strain relationships; it is clearly seen that the strain rate influences the

Fig. 8. Finite elements and Gauss integration points.

Fig. 9. Size of specimen and boundary conditions.
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associated stress–strain responses. Fig. 11 shows the simulated results for normally consolidated and
overconsolidated clays with a permeability coefficient of 1:54� 10�8 (m/s).
It can be seen from Fig. 11 that the deformed meshes of normally and overconsolidated clay specimens

display localization of deformation at an average axial strain of 8% and 6%, respectively. The appearance
of the shear band at a larger strain in NC clay is consistent with the stress–strain curves with gradual
softening. The occurrence of localization at an early stage of deformation in the case of overconsolidated
clay is consistent with the average stress–strain relationships shown in Fig. 10. This tendency has been
observed in the experiments (e.g. Hicher et al., 1994).
Fig. 12 shows the accumulated viscoplastic shear strain cp �

R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
devpij de

vp
ij

q
. In the case of overconsolidated

clay, strain localization starts near the edges of the top and the bottom plates, and finally, four shear bands
appear. In contrast to the case of overconsolidated clay, only two shear bands are seen for normally
consolidated clay, with shear bands clearly developing just beneath the edges of the top and the bottom
plates. As for the distribution of viscoplastic volumetric strain magnitude, it is seen from Fig. 13 that a
decrease in viscoplastic volumetric strain (viscoplastic volume expansion) occurs along the shear bands for
overconsolidated clay, while only viscoplastic compression is seen in the case of normally consolidated clay.
The tendency of the distribution of viscoplastic volumetric strain is, in fact, related to the changes in mean

Fig. 10. Average stress–strain relations.
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Fig. 11. Deformed meshes of NC and OC clays ( _ee11 ¼ 0:1%/min, k ¼ 1:54� 10�8 m/s).

Fig. 12. Distribution of cp for NC and OC clays ( _ee11 ¼ 0:1%/min, k ¼ 1:54� 10�8 m/s).
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effective stresses since calculations are carried out under globally undrained conditions. Fig. 14 shows the
distribution of mean effective stress with the progress of average axial strain. In the case of overconsolidated
clay, the mean effective stress generally increases in the specimen from its initial value, i.e. 100 kPa.
However, along the shear bands, mean effective stress levels are lower than those in the other regions of the
specimen. In the case of normally consolidated clay, the mean effective stress decreases from its initial value
of 392 kPa due to negative dilatancy. The extent of the decrease in mean effective stress is larger in shear
bands.
In general the distribution of mean effective stress is related to pore fluid motion. Hence, in order to

examine the distribution of mean effective stress, it is necessary to evaluate the effect of the permeability
coefficient. Fig. 15 shows the distributions of mean effective stress and viscoplastic volumetric strain for
overconsolidated clay with a permeability coefficient as low as 1:54� 10�10 (m/s). In this case, the mean
effective stress along the shear bands is relatively higher than that in the regions between them. This ten-
dency is in contrast to that found in the numerical results obtained for the high permeability case shown in
Fig. 14. The reason for this difference is that pore water can easily move within a material with high
permeability. Hence, an increase in mean effective stress due to positive dilatancy can be cancelled by the
inflow of pore water toward the shear bands. Fig. 16 displays the distribution of pore water pressure.
Comparing the distributions of mean effective stress and plastic shear strain, it is seen that the distribution
of pore water pressure is rather homogeneous for both normally and overconsolidated clays. However,
higher levels of pore water pressure develop for normally consolidated clay. The relatively homogeneous
distribution of pore water pressure within the specimen is considered to be due to the migration of pore
water.

Fig. 13. Distribution of accumulated viscoplastic volumetric strain for NC and OC clays ( _ee11 ¼ 0:1%/min, k ¼ 1:54� 10�8 m/s).
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4.2. Effects of strain rate and permeability

The deformed meshes for higher average strain rates (1%/min) are shown in Fig. 17. It is seen that
normally consolidated clay is more stable with higher strain rates, while the effect of strain rates is not very
significant for overconsolidated clay. The reason for this observation is that, for normally consolidated
clay, the mean effective stress greatly changes before the peak stress owing to the shape of the plastic
potential function. This is not the case for overconsolidated clay. Fig. 18 displays the distribution of ac-
cumulated viscoplastic shear strain cp with different permeability coefficients. In Fig. 16, the appearance of
four shear bands is clearly seen for the cases of lower permeability levels. In addition, the figure shows that
the distance between the shear bands is wider than that in the case of higher permeability levels. A possible
reason for the larger number of shear bands in the overconsolidated clay than in the normally consolidated
clay is that the strain softening associated with dilation may cause a reduction in the mean effective stress.
Consequently, the adjacent regions can easily deform so as to lead to the occurrence of a larger number of
shear bands. The average stress is higher for cases with lower permeability levels (k ¼ 1:54� 10�10 m/s). As
pointed out by Loret and Prevost (1991), materials with low permeability levels are more stable than those
with high permeability levels. This tendency of the stress–strain response is similar to the effect of the strain
rate.

4.3. Mesh size dependency

In order to check the mesh size dependency of the numerical results, simulations are performed using
various mesh sizes. For normally consolidated clay, there is no significant mesh size dependency (Oka et al.,

Fig. 14. Distribution of mean effective stress for NC and OC clays ( _ee11 ¼ 0:1%/min, k ¼ 1:54� 10�8 m/s).
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Fig. 15. Distribution of mean effective stress and accumulated viscoplastic volumetric strain for OC clay ( _ee11 ¼ 0:1%/min,
k ¼ 1:54� 10�10 m/s).

Fig. 16. Distribution of pore water pressure for NC and OC clays ( _ee11 ¼ 0:1%/min, k ¼ 1:54� 10�8 m/s).
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1995). As for the overconsolidated clay, numerical calculations with smaller elements (800 elements) di-
verged after the peak stress around 2% of the axial strain. In order to examine the effect of the end con-
straints, the ‘‘no lateral displacements at top and bottom plates’’ was relaxed by instead using a frictional
boundary with a frictional coefficient of 0.00001. Fig. 19 shows the deformed meshes for different numbers
of elements. Since no noticeable mesh size dependency is observed in Fig. 19, the occurrence of any nu-
merical instability can only result from the imposition of strong constraints. No influence of mesh size on
stress–strain responses is seen in Fig. 20. Hence, it is worth noting that the numerical calculations for
overconsolidated clay are more sensitive to constraint conditions than those for normally consolidated clay.
In other words, OC clay easily leads to instability. This tendency is consistent with the results of the in-
stability analysis obtained in Section 3.

5. Conclusions

The main conclusions obtained from this paper are as follows. In the first part of this paper, an elasto-
viscoplastic constitutive model for clay was derived based on a Chaboche type of viscoplasticity theory. The
proposed model can very well reproduce both positive and negative dilatancy characteristics which are the
important characteristics of soil. Next, the instability of the model was studied under undrained triaxial
creep conditions for simplicity. It was seen that the model with positive dilatancy was more unstable than
the model with negative dilatancy in terms of creep failure. Even when a second material function was not
included in the formulation, the model could become unstable with positive dilatancy. On the other hand,
the model with negative dilatancy became unstable only when a second material function was introduced.

Fig. 17. Deformed meshes of NC and OC clays ( _ee11 ¼ 1:0%/min, k ¼ 1:54� 10�8 m/s).
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Fig. 18. Distribution of cp and stress–strain relations with different permeability coefficients.

Fig. 19. Deformed mesh and distribution of cp for OC clay with different element size ( _ee11 ¼ 0:1%/min, k ¼ 1:54� 10�8 m/s).
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As for the numerical simulation of the shear band development, using the elasto-viscoplastic model, it was
found that dilatancy characteristics strongly affect the strain localization pattern as well as the permeability
and the strain rate.
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